The Sigma Coindex of Graph Operations
نویسندگان
چکیده
The sigma coindex is defined as the sum of squares differences between degrees all nonadjacent vertex pairs. In this paper, we propose some mathematical properties coindex. Later, present precise results for coindices various graph operations such tensor product, Cartesian lexicographic disjunction, strong union, join, and corona product.
منابع مشابه
The F-coindex of some graph operations
The F-index of a graph is defined as the sum of cubes of the vertex degrees of the graph. In this paper, we introduce a new invariant which is named as F-coindex. Here, we study basic mathematical properties and the behavior of the newly introduced F-coindex under several graph operations such as union, join, Cartesian product, composition, tensor product, strong product, corona product, disjun...
متن کاملThe Hyper-Zagreb Index of Graph Operations
Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian p...
متن کاملApplications of Graph Operations
In this paper, some applications of our earlier results in working with chemical graphs are presented.
متن کاملSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کاملReformulated F-index of graph operations
The first general Zagreb index is defined as $M_1^lambda(G)=sum_{vin V(G)}d_{G}(v)^lambda$. The case $lambda=3$, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as $EM_1^lambda(G)=sum_{ein E(G)}d_{G}(e)^lambda$ and the reformulated F-index is $RF(G)=sum_{ein E(G)}d_{G}(e)^3$. In this paper, we compute the reformulated F-index for some grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2021
ISSN: ['2314-4785', '2314-4629']
DOI: https://doi.org/10.1155/2021/5534444